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Abstract—Worldwide health scientists are producing, access-
ing, analyzing, integrating, and storing massive amounts of digital
medical data daily, through observation, experimentation, and
simulation. If we were able to effectively transfer and integrate
data from all possible resources, then a deeper understanding
of all these data sets and better exposed knowledge, along with
appropriate insights and actions, would be granted. Unfortu-
nately, in many cases, the data users are not the data producers,
and they thus face challenges in harnessing data in unforeseen
and unplanned ways. In order to obtain the ability to integrate
heterogeneous data, and thereby efficiently revolutionize the tra-
ditional medical and biological research, new methodologies built
upon the increasingly pervasive cyberinfrastructure are required
to conceptualize traditional medical and biological data, and
acquire the “deep” knowledge out of original data thereafter. As
formal knowledge representation models, ontologies can render
invaluable help in this regard. In this paper, we summarize
the state-of-the-art research in ontological techniques and their
innovative application in medical and biological areas.

Index Terms—bioinformatics; medical informatics; knowledge
sharing; ontology matching; heterogeneous semantics; and se-
mantic integration

I. INTRODUCTION AND RESEARCH MOTIVATION

In medical informatics area, an abundance of digital data
has promised a profound impact in both the quality and
rate of discovery and innovation. Modern experimental and
observational instruments generate and collect large sets of
data of varying types at increasing speeds. Worldwide health
scientists are producing, accessing, analyzing, integrating, and
storing massive amounts of digital medical data daily, through
observation, experimentation, and simulation. If we were able
to effectively transfer and integrate data from all possible
resources, then a deeper understanding of all these data sets
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and better exposed knowledge, along with appropriate insights
and actions, would be granted. Unfortunately, in many cases,
the data users are not the data producers, and they thus face
challenges in harnessing data in unforeseen and unplanned
ways. In order to obtain the ability to integrate heterogeneous
data, and thereby efficiently revolutionize the traditional med-
ical and biological research, new methodologies built upon
the increasingly pervasive cyberinfrastructure are required to
conceptualize data, and acquire the “deep” knowledge out of
original data thereafter. In particular, ontologies are formal,
declarative knowledge representation models. They form a
semantic foundation for many domains, and thus render great
help to medical informatics researchers in better capturing
hidden knowledge from large amounts of original data. The
most renowned example of applying ontological techniques
into medical and biological research is the Gene Ontology
(GO) project [16].

Note that a lot of time and efforts have been spent in every
search for available information in each small medical infor-
matics subarea. This situation is further aggravated by great
complexity and imprecise terminologies, which characterize
typical medical and biological fields. A great deal of variety
has been identified in the adoption of different biological
terms, along with the relationships among all these terms.
Such variety has inhibited effective information acquisition
by both human and computers. Therefore, there is a need
to explore innovative, cyber-enabled computing frameworks
that are based on ontological techniques. Such frameworks
will facilitate knowledge acquisition from existing resources,
assist biologists in better understanding important biological
functions at different levels, and ultimately, help clinicians in
making sound decisions when treating their patients.

In the rest of this paper, we briefly summarize the state-



of-the-art research in two areas, (1) ontologies and (2) the
application of ontological techniques in medical and biological
research. We aim to provide the reader with an introduction
of major themes in these research areas, along with pointers
to different research projects.

II. ONTOLOGY RESEARCH

A. Background

Ontology is a computational model of some portion or
domain of the world [32]. The model describes the semantics
of the terms used in the domain. Ontology is often captured in
some form of a semantic network, i.e., a graph whose nodes
are concepts or individual objects and whose arcs represent
relationships or associations among the concepts. The semantic
network is augmented by properties and attributes, constraints,
functions, and rules, which govern the behavior of the con-
cepts. In brief, an ontology consists of a finite set of concepts,
along with these concepts’ properties and relationships. In
addition, most real-world ontologies have very few or no
instances, i.e., they only have the aforementioned graphical
structure (also known as “schema”).

Ontology Heterogeneity is an inherent characteristic of
ontologies developed by different parties for the same (or
similar) domains. The heterogeneous semantics may occur
in two ways. (1) Different ontologies could use different
terminologies to describe the same conceptual model. That
is, different terms could be used for the same concept, or
an identical term could be adopted for different concepts. (2)
Even if two ontologies use the same name for a concept, the
associated properties and the relationships with other concepts
are most likely to be different.

Ontology Matching is short for “Ontology Schema Match-
ing”, also known as “Ontology Alignment,” or “Ontology
Mapping.” It is the process of determining correspondences
between concepts from heterogeneous ontologies (often de-
signed by distributed parties). Such correspondences include
many relationships, for example, equivalentWith, subClassOf,
superClassOf, and siblings.

Machine Learning is a scientific discipline that is con-
cerned with the design and development of algorithms that
allow computers to change behavior based on available data
(also known as “training data”). A major focus of machine
learning research is to automatically learn to recognize com-
plex patterns and make intelligent decisions based on data.

Ontological techniques have been widely applied to medical
and biological research. The most successful example is the
GO project [16], which is a major bioinformatics initiative
with the aim of standardizing the representation of gene and
gene product attributes across species and databases. GO
provides a controlled vocabulary of terms for describing gene
product characteristics and gene product annotation data, as
well as tools to access and process such data.

There are many research directions in ontologies, e.g., auto-
matic ontology generation, ontology engineering, and ontology
matching, etc., with ontology matching the most related one
to this paper’s theme.

B. Related Work
According to the classification in [10], most ontology-

matching techniques [12], [31] can be divided into two cate-
gories: rule-based approaches and learning-based approaches.

1) Rule-Based Ontology Matching: In [29], N.F. Noy and
M.A. Musen describe PROMPT, a semiautomatic approach to
ontology alignment. By performing some tasks automatically
and guiding the user in performing other tasks for which
intervention is required, PROMPT helps in understanding
ontologies covering overlapping domains.

S. Castano et al. present H-MATCH in [5]. The authors
divide the semantics of a concept into its linguistic and
contextual parts. The former captures the meaning of terms
used as concept names, while the latter evaluates the semantic
affinity between two concepts by taking into account the
affinity between their contexts, which are concept properties
and relationships.

In [11], D. Dou et al. view ontology translation as ontology
merging and automated reasoning, which are in turn imple-
mented through a set of axioms. They obtain the merger of
two related ontologies by taking the union of the terms and the
axioms defining them, then adding bridging axioms through
the terms in the merge. The language used in this approach,
Web-PDDL, has the right degree of flexibility.

Similarity Flooding (SF) [28] is a matching algorithm based
on a fixpoint computation that is usable across different
scenarios. SF takes two graphs as input, and produces as output
a mapping between corresponding nodes. This work defines
several filtering strategies for pruning the immediate result of
the fixpoint computation.

Cupid [26] is an algorithm for generic schema matching
outside of any particular data model or application. It discovers
mappings between schema elements based on their names,
data types, constraints, and schema structure. Cupid has a
bias toward leaf structures where much of the schema content
resides.

S-Match [13], [15] views match as an operator that takes
two graph-like structures and produces a mapping between the
nodes of the graphs. Mappings are discovered by computing
semantic relations, which are determined by analyzing the
meaning that is codified in the elements and the structures
of the schemas.

[14] presents structure preserving match, which preserves a
set of structural properties of the graphs being matched. An
approximate structure matching algorithm is described, based
on a formal theory of abstraction, and build upon tree edit
distance measures.

In [20] and [21], J. Huang et al. describe Puzzle to merge
two source ontologies. The main idea is to relocate each
concept from one ontology into another one. During this
automated process, both linguistic and contextual features are
considered, and the final decision relies on a set of rules that
are based on domain-independent relationships and concept
properties. In addition, the authors present a vector system,
CVS, to manage compatibility among a number of ontologies.
Compatibility vectors are stored in a center, encoding a



measure of distance (dissimilarity) from an original ontology
to the center. Such vectors can be efficiently adjusted, so that
to render help in choosing appropriate partners based on their
compatibility.

B. Hu et al. [19] explore the ontology matching in a dynamic
and distributed environment where on-the-fly alignments are
needed. Their approach exploits imperfect consensuses among
heterogeneous data holders by collaborating the logic for-
malisms with Web repositories.

In [38], the authors design a procedure for mapping hierar-
chical ontologies populated with properly classified text doc-
uments. Through the combination of structural and instance-
based approaches, the procedure reduces the terminological
and conceptual ontology heterogeneity, and yields certain
granularity and instantiation judgments about the inputs.

2) Learning-Based Ontology Matching: In [9], A. Doan et
al. describe GLUE, which employs machine learning tech-
niques to find semantic mappings between ontologies. A
Metalearner is used to combine the predictions from both
Content Learner and Name Learner; a similarity matrix is
then built; and common knowledge and domain constraints
are incorporated through a Relaxation Labeler. In addition,
GLUE has been extended to find complex mappings.

A.B. Williams and C. Tsatsoulis [41] present their theory for
learning ontologies among agents with diverse conceptualiza-
tions to improve group semantic concept search performance.
The authors introduce recursive semantic context rule learning
and unsupervised concept cluster integration to address the
issue of how agents teach each other to interpret and integrate
knowledge.

L.-K. Soh describes a framework for distributed ontology
learning in a multiagent environment [35]. The objective is to
improve communication and understanding among the agents
while agent autonomy is still preserved. Each agent maintains
a dictionary for its own experience and a translation table,
and the concept learning and interpretation are based on a
description vector.

[7], [8], and [30] are a series of work in ontology matching
based on a Bayesian (BN) approach. The methodology is
built on BayesOWL. The algorithm learns probabilities us-
ing the naive Bayes text classification technique; then these
probabilities and original ontologies are translated into the BN
structures; finally, the algorithm finds new mappings between
concepts.

[1] presents a general method for agents using ontologies
to teach each other concepts to improve their communication
and thus cooperation abilities. An agent gets both positive and
negative examples for a concept from other agents; it then
makes use of one of its known concept learning methods to
learn the concept in question, involving other agents again by
taking votes in case of knowledge conflicts.

J. Madhavan et al. [27] use a corpus of schemas and
mappings to augment the evidence about the schemas being
matched. The algorithm exploits a corpus in two ways. It
first increases the evidence about each element by including
evidence from similar elements in the corpus; then it learns

statistics about elements and their relationships and uses them
to infer constraints to prune candidate mappings.

[39] tackles the challenge of aligning multiple concepts
simultaneously. Two statistically-grounded measures (Jaccard
and LSA) are explored to build conversion rules that aggregate
similar concepts, and different ways of learning and deploying
the multi-concept alignment are evaluated.

In order to solve the problem of low precision resulted from
ambiguous words, J. Gracia et al. [18] introduce techniques
from Word Sense Disambiguation. They validate the mappings
by exploring the semantics of the ontological terms involved in
the matching process. They also discuss techniques to filter out
mappings resulting from the incorrect anchoring of ambiguous
terms.

P. Lambrix et al. [25] describe SVM-based algorithms to
align ontologies using literature. The authors have discovered:
(1) SVM-S and NB obtain similar results; (2) the combinations
of TermWN with SVM-S and with SVM-P lead to a large gain
in precision compared to TermWN and SVM-P, with still a
high recall.

SOCCER [22] is a learning-based approach to reconcile
ontologies. Unlike most of other approaches, SOCCER’s
learning process depends on ontology schema information
alone. Due to the fact that instances usually have a lot less
varieties than schemas, it is extremely challenging for the
learning to rely on schema information only. SOCCER applies
an Artificial Neural Network (ANN) to learning different
weights for different semantic aspects, and then it adopts
an agglomerative clustering algorithm to find out a set of
equivalent concepts from heterogeneous ontologies. J. Huang
et al. evaluate SOCCER by aligning two real-world biological
ontologies (BiologicalProcess and Pathway).

III. ONTOLOGICAL TECHNIQUES IN MEDICAL AND
BIOLOGICAL RESEARCH

Ontological techniques have been widely applied to medical
and biological research. The most successful example is the
GO project [16], which is a major bioinformatics initiative
with the aim of standardizing the representation of gene and
gene product attributes across species and databases. GO
provides a controlled vocabulary of terms for describing gene
product characteristics and gene product annotation data, as
well as tools to access and process such data. The focus of GO
is to describe how gene products behave in a cellular context.
Besides, research has been carried out for ontology-based data
integration in bioinformatics.

[4] discusses the issue of mapping concepts in GO to
Unified Medical Language System (UMLS). Such mapping
may allow for the exploitation of the UMLS semantic network
to link disparate genes, through their annotation in GO, to
unique clinical outcomes, potentially uncovering biological
relationships. This study reveals the inherent difficulties in the
integration of vocabularies created in different manners and
by specialists in different fields, as well as the strengths of
different techniques used to accomplish this integration.



J. Kohler, S. Philippi, and M. Lange [24] describe principles
and methods used to implement SEMEDA (Semantic Meta
Database). Database owners may use SEMEDA to provide
semantically integrated access to their databases; they may
collaboratively edit and maintain ontologies and controlled
vocabularies as well. This work enables biologists to use
SEMEDA to query the integrated databases in real time
without having to know the structure or any technical details
of the underlying databases. The authors aim to handle tech-
nical problems of database integration and issues related to
semantics, e.g., the use of different terms for the same things,
different names for equivalent database attributes, and missing
links between relevant entries in different databases.

E.P. Sulman, P.S. White, and G.M. Brodeur [36] report
a high-resolution integrated map of the region constructed
(CompView) to identify all markers in the smallest region
of overlapping deletion (SRO). A regional somatic cell hy-
brid panel is used to more precisely localize those markers
identified in CompView as within or overlapping the region,
and a sequence from clones is used to validate STS content
by electronic PCR and to identify transcripts. The authors
conclude that the annotation of a putative tumor suppressor
locus provides a resource for further analysis of meningioma
candidate genes.

The authors in [6] adopt global gene expression profiling
combined with an evaluation of GO and pathway mapping
tools as unbiased methods for identifying the molecular path-
ways and processes affected upon toxicant exposure. They use
the acute effects caused by the non-genotoxic carcinogen and
peroxisome proliferator (PP) diethylhexylphthalate (DEHP)
in the mouse liver as a model system. By revealing that
gene expression changes associated with additional biological
functions, along with mechanisms by which non-genotoxic
carcinogens control hepatocyte hypertrophy and proliferation,
their work demonstrates that GO mapping can identify, in
an unbiased manner, both known and novel DEHP-induced
molecular changes in the mouse liver and is therefore a
powerful approach for elucidating modes of toxicity based on
toxicogenomic data.

V. Jakoniene and P. Lambrix [23] argue that during the
process of retrieving and information integration from multiple
biological data sources, approaches should be enhanced by
ontological knowledge. They identify the different types of
ontological knowledge that are available on the Web, based
on which they propose an approach to use such knowledge to
support integrated access to multiple biological data sources.
Their work also shows that current ontology-based integration
approaches only cover parts of their proposed approach.

A. Birkland and G. Yona [3] present a system, Biozon,
to address the problems encountered in the integration of
heterogeneous data types in biology domain. Biozon offers
biologists a new knowledge resource to navigate through and
explore by unifying multiple biological databases consisting
of a variety of data types (such as DNA sequences, proteins,
interactions, and cellular pathways). Biozon is different from
previous efforts as it uses a single extensive and tightly

connected graph schema wrapped with hierarchical ontology
of documents and relations. Beyond warehousing existing data,
Biozon computes and stores novel derived data, similarity
relationships and functional predictions for example. The
integration of similarity data allows propagation of knowledge
through inference and fuzzy searches.

The authors in [42] develop a computational approach to
analyze the annotation of sets of molecules. The distance
between any two proteins is measured as the graph similar-
ity between their GO annotations. These distances are then
clustered to highlight subsets of proteins sharing related GO
annotation. By determining the distances between annotations,
this methodology reveals trends and enrichment of proteins of
particular functions within high-throughput datasets at a higher
sensitivity than perusal of end-point annotations.

The value of any kind of data is greatly enhanced when
it exists in a form that allows it to be integrated with other
data. One approach to integration is through the annotation of
multiple bodies of data using common controlled vocabularies
or ontologies. Unfortunately, the very success of this approach
has led to a proliferation of ontologies, which itself creates
obstacles to integration. In order to overcome such problem,
B. Smith et al. [33] describe a strategy, the Open Biomedical
Ontologies (OBO) Foundry initiative. Their long-term goal is
that the data generated through biomedical research should
form a single, consistent, cumulatively expanding and algo-
rithmically tractable whole. Efforts to realize this goal, which
are still very much in the proving stage, reflect an attempt
to walk the line between the flexibility that is indispensable
to scientific advance and the institution of principles that is
indispensable to successful coordination.

X. Zhou and Z. Su [44] present EasyGO, a Web server
to perform GO-based functional interpretation on groups of
genes or GeneChip probe sets. EasyGO makes a special con-
tribution to the agronomical research community by supporting
Affymetrix GeneChips of both crops and farm animals, and
by providing stronger capabilities for results visualization and
user interaction. EasyGO has the ability to uncover hidden
knowledge by analyzing a group of probe sets with similar
expression profiles.

J. Ye et al. [43] propose to integrate heterogeneous data
for Alzheimer’s disease (AD) prediction based on a kernel
method. They further extend the kernel framework for select-
ing features (biomarkers) from heterogeneous data sources.
The proposed method is applied to a collection of MRI data
from 59 normal healthy controls and 59 AD patients. The MRI
data is pre-processed using tensor factorization. In this study,
the authors treat the complementary voxel-based data and
region of interest (ROI) data from MRI as two data sources,
and they attempt to integrate the complementary information
by the proposed method. Experimental results show that the
integration of multiple data sources leads to a considerable
improvement in the prediction accuracy. Results also show that
the proposed algorithm identifies biomarkers that play more
significant roles than others in AD diagnosis.

[17] is an extension on the opening invited talk by C. Goble



given at the Health Care and Life Sciences Data Integration
for the Semantic Web Workshop collocated with WWW2007.
The authors believe that if the bioinformatics community could
become better organized on only one topic, then it should
be addressing the issue of identity and naming. Projects such
as Bio2RDF are a step towards the provision of real time
translation and harmonization of identifiers over bioscience
datasets, but have yet to gain real traction. The failure to
address identity will be the most likely obstacle that will
prevent mashups, or any other technology or strategy, from
becoming an effective integration mechanism. It is thus critical
to grasp the nettle of identity management and to show how,
using lightweight semantic techniques, the user can rapidly
aggregate data just in time and just when it needs to be, by
the user and for the user.

A set of high-quality electronic and manual associations (an-
notations) of GO terms to UniProt Knowledgebase (UniPro-
tKB) entries are provided in the Gene Ontology Annotation
(GOA) project [2]. Annotations created by the project are
collated with annotations from external databases to provide
an extensive, publicly available GO annotation resource. Cur-
rently covering over 160,000 taxa, with greater than 32 million
annotations, GOA remains the largest and most comprehensive
open-source contributor to the GO Consortium (GOC) project.

In a survey paper, G.A. Thorisson, J. Muilu, and A.J.
Brookes [37] discuss the challenging problem of intercon-
necting large sets of related information so that they can be
searched and downloaded from a single portal. They look
into how this has been tackled in the past for genotype-
to-phenotype (G2P) data, and they also investigate how the
relevant technologies are currently being improved. This work
discusses some of the technical issues surrounding database
development, and the recent trend towards an increased em-
phasis on federated database solutions, which can link inde-
pendent databases through a central portal and be married
with the proven benefits of traditional central databases in
which related data is stored all in one place. In addition, the
authors consider even more revolutionary approaches to data
integration and utilization, and discuss potential challenges
that need to be addressed.

[Washington09] proposes a hypothesis that ontological an-
notation of disease phenotypes will facilitate the discovery
of new genotype-phenotype relationships within and across
species. The authors apply an Entity-Quality (EQ) method-
ology to annotate the phenotypes of 11 gene-linked human
diseases described in Online Mendelian Inheritance in Man
(OMIM). In addition, four similarity metrics are utilized to
compare phenotypes, and an ontology of homologous and
analogous anatomical structures is developed to compare
phenotypes between species. They conclude that EQ-based
annotation of phenotypes, in conjunction with a cross-species
ontology and a variety of similarity metrics, can identify bio-
logically meaningful similarities between genes by comparing
phenotypes alone.

The Mammalian Phenotype Ontology (MP) is a tool pre-
sented in [34] for classifying and organizing phenotypic infor-

mation related to the mouse and other mammalian species. Use
of the MP ontology allows comparisons of data from diverse
sources, facilitates comparisons across mammalian species,
assists in identifying appropriate experimental disease models,
and aids in the discovery of candidate disease genes and
molecular signaling pathways.

IV. CONCLUDING REMARKS

While there are many challenges, much excitement has been
identified in the fields of bioinformatics and medical infor-
matics. We believe that a systematic approach that combines
a variety of data sources will help us to better understand
various biological functions and features, especially those
closely related to different types of disease. In order to
obtain the ability to integrate heterogeneous data, and thereby
efficiently revolutionize the traditional medical and biological
research, new methodologies built upon the increasingly perva-
sive cyberinfrastructure are required to conceptualize data, and
acquire the “deep” knowledge out of original data thereafter.
Being formal, declarative knowledge representation models,
ontologies form a semantic foundation for bioinformatics and
medical informatics research, and thus render great help to
medical and biological researchers in better capturing hidden
knowledge from large amounts of original data. Ontological
techniques have been widely applied to medical and biological
research. Nevertheless, there is still a need to explore inno-
vative, cyber-enabled computing frameworks that are based
on ontological techniques. These frameworks will facilitate
knowledge acquisition from existing resources, assist biolo-
gists in better understanding important biological functions
at different levels, and ultimately, help clinicians in making
sound decisions when treating their patients.
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